45 research outputs found

    The efficacy of transcranial current stimulation techniques to modulate resting-state EEG, to affect vigilance and to promote sleepiness

    Get PDF
    Transcranial Current Stimulations (tCSs) are non-invasive brain stimulation techniques which modulate cortical excitability and spontaneous brain activity by the application of weak electric currents through the scalp, in a safe, economic, and well-tolerated manner. The direction of the cortical effects mainly depend on the polarity and the waveform of the applied current. The aim of the present work is to provide a broad overview of recent studies in which tCS has been applied to modulate sleepiness, sleep, and vigilance, evaluating the efficacy of different stimulation techniques and protocols. In recent years, there has been renewed interest in these stimulations and their ability to affect arousal and sleep dynamics. Furthermore, we critically review works that, by means of stimulating sleep/vigilance patterns, in the sense of enhancing or disrupting them, intended to ameliorate several clinical conditions. The examined literature shows the efficacy of tCSs in modulating sleep and arousal pattern, likely acting on the top-down pathway of sleep regulation. Finally, we discuss the potential application in clinical settings of this neuromodulatory technique as a therapeutic tool for pathological conditions characterized by alterations in sleep and arousal domains and for sleep disorders per se

    EEG oscillations during sleep and dream recall. State- or trait-like individual differences?

    Get PDF
    Dreaming represents a peculiar form of cognitive activity during sleep. On the basis of the well-known relationship between sleep and memory, there has been a growing interest in the predictive role of human brain activity during sleep on dream recall. Neuroimaging studies indicate that rapid eye movement (REM) sleep is characterized by limbic activation and prefrontal cortex deactivation. This pattern could explain the presence of emotional contents in dream reports. Furthermore, the morphoanatomical measures of amygdala and hippocampus predict some features of dream contents (bizarreness, vividness, and emotional load). More relevant for a general view of dreaming mechanisms, empirical data from neuropsychological and electroencephalographic (EEG) studies support the hypothesis that there is a sort of continuity between the neurophysiological mechanisms of encoding and retrieval of episodic memories across sleep and wakefulness. A notable overlap between the electrophysiological mechanisms underlying emotional memory formation and some peculiar EEG features of REM sleep has been suggested. In particular, theta (5–8 Hz) EEG oscillations on frontal regions in the pre-awakening sleep are predictive of dream recall, which parallels the predictive relation during wakefulness between theta activity and successful retrieval of episodic memory. Although some observations support an interpretation more in terms of an intraindividual than interindividual mechanism, the existing empirical evidence still precludes from definitely disentangling if this relation is explained by state- or trait-like differences

    The functional role of dreaming in emotional processes

    Get PDF
    Dream experience (DE) represents a fascinating condition linked to emotional processes and the human inner world. Although the overlap between REM sleep and dreaming has been overcome, several studies point out that emotional and perceptually vivid contents are more frequent when reported upon awakenings from this sleep stage. Actually, it is well-known that REM sleep plays a pivotal role in the processing of salient and emotional waking-life experiences, strongly contributing to the emotional memory consolidation. In this vein, we highlighted that, to some extent, neuroimaging studies showed that the processes that regulate dreaming and emotional salience in sleep mentation share similar neural substrates of those controlling emotions during wakefulness. Furthermore, the research on EEG correlates of the presence/absence of DE and the results on EEG pattern related to the incorporated memories converged to assign a crucial role of REM theta oscillations in emotional re-processing. In particular, the theta activity is involved in memory processes during REM sleep as well as during the waking state, in line with the continuity hypothesis. Also, the gamma activity seems to be related to emotional processes and dream recall as well as to lucid dreams. Interestingly, similar EEG correlates of DE have been found in clinical samples when nightmares or dreams occur. Research on clinical samples revealed that promoting the rehearsal of frightening contents aimed to change them is a promising method to treat nightmares, and that lucid dreams are associated with an attenuation of nightmares. In this view, DE can defuse emotional traumatic memories when the emotional regulation and the fear extinction mechanisms are compromised by traumatic and frightening events. Finally, dreams could represent a sort of simulation of reality, providing the possibility to create a new scenario with emotional mastery elements to cope with dysphoric items included in nightmares. In addition, it could be hypothesized that the insertion of bizarre items besides traumatic memories might be functional to “impoverish” the negative charge of the experiences

    State- or trait-like individual differences in dream recall. Preliminary findings from a within-subjects study of multiple nap REM sleep awakenings

    Get PDF
    We examined the question whether the role of EEG oscillations in predicting presence/absence of dream recall (DR) is explained by "state-" or "trait-like" factors. Six healthy subjects were awakened from REM sleep in a within-subjects design with multiple naps, until a recall and a non-recall condition were obtained. Naps were scheduled in the early afternoon and were separated by 1 week. Topographical EEG data of the 5-min of REM sleep preceding each awakening were analyzed by power spectral analysis [Fast Fourier Transform (FFT)] and by a method to detect oscillatory activity [Better OSCillations (BOSC)]. Both analyses show that REC is associated to higher frontal theta activity (5-7 Hz) and theta oscillations (6.06 Hz) compared to NREC condition, but only the second comparison reached significance. Our pilot study provides support to the notion that sleep and wakefulness share similar EEG correlates of encoding in episodic memories, and supports the "state-like hypothesis": DR may depend on the physiological state related to the sleep stage from which the subject is awakened rather than on a stable individual EEG pattern

    Oscillatory EEG activity during REM sleep in elderly people predicts subsequent dream recall after awakenings

    Get PDF
    Several findings underlined that the electrophysiological (EEG) background of the last segment of sleep before awakenings may predict the presence/absence of dream recall (DR) in young subjects. However, little is known about the EEG correlates of DR in elderly people. Only an investigation found differences between recall and non-recall conditions during NREM sleep EEG in older adults, while—surprisingly—no EEG predictor of DR was found for what concerns REMsleep. Considering REMsleep as a privileged scenario to produce mental sleep activity related to cognitive processes, our study aimed to investigate whether specific EEG topography and frequency changes during REM sleep in elderly people may predict a subsequent recall of mental sleep activity. Twenty-one healthy older volunteers (mean age 69.2 ± 6.07 SD) and 20 young adults (mean age 23.4 ± 2.76 SD) were recorded for one night from19 scalp derivations. Dreams were collected upon morning awakenings from REM sleep. EEG signals of the last 5min were analyzed by the Better OSCillation algorithm to detect the peaks of oscillatory activity in both groups. Statistical comparisons revealed that older as well as young individuals recall their dream experience when the last segment of REM sleep is characterized by frontal theta oscillations. No Recall (Recall vs. Non-Recall) × Age (Young vs. Older) interaction was found. This result replicated the previous evidence in healthy young subjects, as shown in within- and between-subjects design. The findings are completely original for older individuals, demonstrating that theta oscillations are crucial for the retrieval of dreaming also in this population. Furthermore, our results did not confirm a greater presence of the theta activity in healthy aging. Conversely, we found a greater amount of rhythmic theta and alpha activity in young than older participants. It is worth noting that the theta oscillations detected are related to cognitive functioning. We emphasize the notion that the oscillatory theta activity should be distinguished from the non-rhythmic theta activity identified in relation to other phenomena such as (a) sleepiness and hypoarousal conditions during the waking state and (b) cortical slowing, considered as an EEG alteration in clinical samples

    Not only a problem of fatigue and sleepiness: Changes in psychomotor performance in Italian nurses across 8-h rapidly rotating shifts

    Get PDF
    Although many studies have detailed the consequences of shift work in nurses concerning health, fatigue, sleepiness, or medical errors, no study has been carried out trying to disentangle the contribution of sleepiness and fatigue associated to shift work from the attentional performance. The aim of this pilot study is (A) to investigate the effects of an 8-h rapidly rotating shift on fatigue and sleepiness among staff nurses and (B) how these factors affect their psychomotor performance. Fourteen nurses were selected for a within-subject cross-sectional study according to this sequence of shifts: morning–afternoon–night, which were compared as function of tiredness, sleepiness, and performance at the Psychomotor Vigilance Task (PVT). Subsequently, a within-subject Analysis of Covariance (ANCOVA) evaluated if the observed differences between shifts persist when the contribution of sleepiness is controlled. Our results clearly indicate that night shifts are associated with significant greater sleepiness and tiredness, and worsened performance at the PVT. As hypothesized, ANCOVA showed that these differences disappear when the contribution of sleepiness is controlled. Results point to a lower psychomotor performance in night compared to day shifts that depends on sleepiness. Hence, interventions to minimize the consequences of the night shift should consider a reduction of sleepiness

    Electrophysiological correlates of dream recall during REM sleep: evidence from multiple awakenings and within-subjects design

    Get PDF
    Purpose: In the current study, we aimed to investigate the EEG correlates of dream recall (DR) monitoring both the homeostatic and state-trait like factors. We assessed the influence of the time of night on the EEG correlates of DR from REM sleep. Specifically, we tested the continuity-hypothesis (on the theta EEG band) and the activation-hypothesis (on the delta and beta bands). Methods: Twenty-seven subjects underwent polysomnography with multiple provoked awakenings during REM sleep. Only the subjects showing combinations of dream recall (REC) and non-REC (NREC) conditions in both first (1st– 2nd sleep cycle) and second (3rd– 4th sleep cycle) part of the night were included in the analyses. The final sample was composed of 10 subjects (mean age 24± 0.70). EEG power spectra of the 5-min of REM sleep preceding each awakening were computed by a fast Fourier transform. The following frequency bands were considered: delta (0.50– 4.75 Hz), theta (5.00– 7.75 Hz), and beta (16.00– 24.75 Hz). We also calculated the delta/beta power ratio as an integrated EEG index of activation. Results: The 2× 2 within-subjects ANOVA recall × time revealed: a) no significant effect for time and no interaction; b) significant differences over the occipital area in the beta band; c) significant differences over the parietal area for the activation index values. Overall, the results indicated that DR is associated with higher activation regardless of homeostatic pressure across the night of sleep. Conclusion: In line with recent findings, we have shown that DR is predicted by desynchronized EEG activity during REM sleep, providing clear evidence in favor of the activation-hypothesis. We have also confirmed that the EEG pattern of DR can be ascribed to state-like factors. Further studies should assess whether homeostatic modulation may interact with some dream features and the related EEG predictors

    EEG alterations during wake and sleep in mild cognitive impairment and Alzheimer's disease

    Get PDF
    Patients with Alzheimer’s disease (AD) undergo a slowing of waking electroencephalographic (EEG) rhythms since prodromal stages, which could be ascribed to poor sleep quality. We examined the relationship between wake and sleep alterations by assessing EEG activity during sleep and (pre-sleep/post-sleep) wakefulness in AD, mild cognitive impairment (MCI) and healthy controls. AD and MCI show high sleep latency and less slow-wave sleep. Reduced sigma activity characterizes non-rapid eyemovement (NREM) sleep, reflecting sleep spindles loss. The EEG slowing characterizes REM sleep and wakefulness of AD and MCI, with strong correlations among the two phenomena suggesting common neuropathological mechanisms. Evening-to-morning variations in waking EEG revealed the gradual disappearance in MCI and AD of overnight changes in delta activity, indicating a progressive decay of sleep restorative functions on diurnal activity that correlates with the impairment of sleep high-frequency activity in AD. Our findings support a linkage between wake and sleep alterations, and the importance of sleep-related processes in Alzheimer’s disease progression

    Sleep-related declarative memory consolidation in children and adolescents with developmental dyslexia

    Get PDF
    Sleep has a crucial role in memory processes, and maturational changes in sleep electrophysiology are involved in cognitive development. Albeit both sleep and memory alterations have been observed in Developmental Dyslexia (DD), their relation in this population has been scarcely investigated, particularly concerning topographical aspects. The study aimed to compare sleep topography and associated sleep-related declarative memory consolidation in participants with DD and normal readers (NR). Eleven participants with DD and 18 NR (9–14 years old) underwent a whole-night polysomnography. They were administered a word pair task before and after sleep to assess for declarative memory consolidation. Memory performance and sleep features (macro and microstructural) were compared between the groups, and the intercorrelations between consolidation rate and sleep measures were assessed. DD showed a deeper worsening in memory after sleep compared to NR and reduced slow spindles in occipito-parietal and left fronto-central areas. Our results suggest specific alterations in local sleep EEG (i.e., sleep spindles) and in sleep-dependent memory consolidation processes in DD.We highlight the importance of a topographical approach, which might shed light on potential alteration in regional cortical oscillation dynamics in DD. The latter might represent a target for therapeutic interventions aimed at enhancing cognitive functioning in DD

    The electroencephalographic features of the sleep onset process and their experimental manipulation with sleep deprivation and transcranial electrical stimulation protocols

    No full text
    The sleep onset (SO) process is characterized by gradual electroencephalographic (EEG) changes. The interest for the possibility to manipulate the electrophysiological pattern of the wake-sleep transition is recently growing. This review aims to describe the EEG modifications of the SO process in healthy humans and the evidence about their experimental manipulation. We provide an overview of the electrophysiological changes during the wake-sleep transition, considering several methods to study the EEG signals. We then describe the impact of sleep deprivation (SD) on the electrophysiology of SO. Finally, we discuss the evidence about the possibility to modulate the local EEG activity through transcranial current stimulation protocols with the aim to promote, hinder, or manipulate the electrophysiological mechanisms of the wake-sleep transition. The reviewed findings highlight the local nature of the EEG processes during the SO and their intensification and speedup after SD. The evidence about the possibility to non-invasively affect the EEG pattern of the wake-sleep transition may have important implications for clinical conditions that would benefit from its prevention or promotion
    corecore